Separate Chaining

Have a list referenced by each slot of hash table that holds all elements that hash to that slot (one hash function).

\[e \rightarrow \text{hash}(e) \]

Insert \(e \) add it to list table[\(\text{hash}(x) \)]

Locate \(e \) search within list table[\(\text{hash}(x) \)]

Remove \(e \) remove \(e \) from list table[\(\text{hash}(x) \)]
Resizing hash table

No absolute limit on \(n/m \) (could go arbitrarily high) but cost is too high

Open addressing \(\leq 1 \)

Resize upward when \(L \) reaches \(2^k \)
Resize downward when \(L \) reaches \(2^{k-1} \)
Analysis

Expected cost for unsuccessful search

every reference we follow

is a “probe”

\[
\text{hash}(k) = 1, 2, 3, \text{full}, 4
\]

expected list length

\[
\frac{n}{m} = \alpha
\]

\[
E\left[\text{# probes in an unsuccessful search}\right] = 1 + \alpha
\]

\[
E\left[\text{# probes in a successful search}\right] = 1 + \frac{\alpha}{2} - \frac{2}{2n}
\]

open addressing

\[
\frac{1}{1-\alpha} = 1 + \alpha + \alpha^2 + \alpha^3 + \ldots
\]