Suppose we think of 4-5 algorithms & we've argued they always yield the correct answer.

How can we determine which will be most efficient, especially as \(n \) gets large?

Why not implement all of them & run them?
Problems
- Takes a lot of time to implement & test
- Time complexity often depends on input itself
- What data size should you use?
What does time complexity depend on?

- input itself
- input size ($n = 100$ vs $n = 1,000,000$)
- hardware (computer) \{ machine dependent \}
- compiler \{ machine dependent \}

Focus on a machine-independent analysis.
Asymptotic Time Complexity

machine independent, rough measure of time complexity as a function of input size \((n)\)

"Back of the envelope" calculation
What are we going to measure?

of statements (lines of code) executed

need to be careful that all statements in your high-level language take "roughly" the same time.
Input size vs Execution time
Input size vs lines of code

lines of code executed: merge sort vs. insertion sort

number of elements in array

Input size vs lines of code
How do we account for dependencies in the input?

Worst-case analysis — consider the input of the given size that is slowest

Expected-case (average-case) analysis — assume some distribution over the data
n^2 vs $n \log n$
Asymptotic Growth Rates

- C constant
- $C \cdot \log n$ logarithmic
- $C \cdot n$ linear
- $n \cdot \log n$
- $C \cdot n^2$ quadratic
- $C \cdot n^3$ cubic

we'll give an algorithm for closest pair w/ this complexity