Correctness of Dijkstra's Alg

Aside

Greedy Algs aren't always optimal

Knapsack that can hold 100 lbs

80, 50, 40

Greedy alg: Take highest value that fits & repeat
Dijkstra’s Alg Proof of Correctness

Prove following invariants

1. For vertex \(u \in T \), \(u.d \) is length of shortest path from \(S \) to \(u \)

2. For vertex \(u \in Q \), tag for \(u \) is length of shortest path from \(S \) to \(u \) with intermediate vertices restricted to \(T \)
Inductive Proof

Base \(T = \emptyset \), \(Q = \{ S \} \) rest is in \(U \) undiscussed vertices

Prop 1 holds vacuously
Prop 2 holds since tag for \(S \) is 0

Inductive Step

Suppose it fails at some point.
Proof by contradiction.
Tree T

Priority Queue Q

Path with weight w to v with tag τ:

- First edge in P^* leaving T with weight ≥ 0
- Path with weight w to v with tag τ

Better path from s to v:

Extract Max gives v and this causes first failure of one of the properties.

$\tau v \leq \frac{\tau}{2}$

Weight p^* at least as large as weight of green path.