Review binary search trees

search j
search g

insertion is a search that ends at "null" + place it.
Finding predecessor

Note \(q \leq V \leq X \leq S \)

Find pred. of \(X \)

Case 1: \(T \) exists

\(V \) is pred

Case 2: \(T \) empty

Then \(q \) is pred.

only \(V \) could be pred (rest are smaller)
Case 3.

T empty \& q doesn't exist

No predecessor

x is first

in an in order traversal

Successor is symmetric
Delete

easy case - delete a leaf
 Remove it

medium case - delete a node with one child

null could be replaced by right child

splice it out

\[\Rightarrow \]
Hardest case delete a node with 2 children could use succ pred has 0 or 1 children remove pred from left subtree